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Abstract— Traditional clustering-based band selection (BS)
methods treat each band as individuals, and selection is con-
ducted by enlarging the difference between clusters, which
leads to the loss of band interaction and information saliency
evaluation. In this article, we propose a BS method named rank-
aware generative adversarial network (R-GAN) to address these
problems. First, centralized reference feature extraction (FE)
with GAN aids R-GAN to combine interpretability and inter-
band relevance. Then, the reference feature is refined with
the saliency estimation provided by the rank-aware strategy.
According to data characteristics, there are two versions of rank
computation including tensor and matrix. Finally, the structural
similarity index measurement (SSIM) maps the saliency to the
original data space to obtain the final BS result. Extensive
comparison experiments with popular existing BS approaches
on five hyperspectral images (HSIs) datasets show that the
proposed R-GAN can address spectral saliency effectively and
select more informative band subsets, which outperforms other
competitors for both detection and classification tasks. For
example, on the SD-1 dataset, the ten bands selected by R-GAN
achieve 0.982 ± 0.003 with an improvement of 13.7% in the area
under the curve (AUC) value of anomaly detection performance.
The peaked accuracy surpasses the baseline by 0.46% for the
classification on the PaviaU dataset.

Index Terms— Band selection (BS), hyperspectral images
(HSIs), rank-aware generative adversarial network (R-GAN),
spectral saliency.
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I. INTRODUCTION

THE wide deployment of cost-sensitive services and low-
powered edge applications highlights the importance

of computing load and memory footprint reduction [1]–[3].
Simplifying network design [4], [5] and reducing data dimen-
sion [6], [7] are two prevalent approaches for removing
redundancy. Hyperspectral images (HSIs) [8]–[10] describe
various surface features by using solar reflectance in
hundreds of spectral bands. The resulted spectral redundancy
is not conducive to downstream tasks, such as anomaly/target
detection [11], [12] and classification [13]. Fig. 1 shows the
similarity between the 205 bands and the reference band. More
than 60 bands achieve similarity greater than 0.9, and there are
more than four-fifths with similarity over 0.5, which indicates
the necessity of removing spectral redundancy through dimen-
sionality reduction (DR).

Band selection (BS) [14]–[17] is an effective DR technique,
solving the redundancy reduction problem in an interpretable
way called “Take the essence, discard the dregs.” BS explores
a salient and representative subset from the original hyper-
spectral data without a detrimental impact on its performance
on follow-up tasks. Instead of projecting data to a low-
dimensional space, such as feature extraction (FE) [18]–[20],
BS preserves the information of the original data in the
physical sense. Roughly, there are two BS schemes: supervised
and unsupervised. Due to more robust performance and higher
application prospects, the latter one is preferred. Recently,
there has been a surge of interest in clustering-based unsuper-
vised or semisupervised BS methods [21]–[26]. Exemplified
with optimal clustering framework (OCF) [27] and enhanced
fast density-peak-based clustering (EFDPC) [28], clustering-
based methods treat each band as individuals and cluster under
some criteria. The most relevant band with other bands in
each cluster is selected as a representative. However, this
strategy fails to consider the global data properties and the
relevance between bands. Besides, the information saliency is
not evaluated, generating a BS result with significant individ-
ual differences but less effective content.

The first dilemma can be solved by deep FE to a certain
degree. Being virtual of the superiority of solving nonlinear
problems, deep FE shows its superiority in summarizing
high-dimensional data. Autoencoder (AE) and its variants
are basic deep FE approaches and rely on a small hidden
layer to generate deep features. Stacked autoencoder (SAE),
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Fig. 1. Similarity between the reference band (130) and other bands.
As shown in (a), there are 180 bands with similarities over 0.5, accounting for
over four-fifths (87.8%). The reference band and the bands with a similarity
varying from 1 to 0.2 (interval = 0.1) are exhibited in (b) from top left to the
bottom right, and only the similarity lower than 0.5 results in a perceptible
visual difference.

e.g., compact and discriminative stacked autoencoder
(CDSAE) [29] and stacked sparse autoencoder (SSAE) [30],
and variational autoencoder (VAE), e.g., spatial revising
variational autoencoder (SRVAE) [31], have succeeded in
low-dimensional feature mapping. Besides, a convolutional
neural network (CNN) is also used for spectral FE [32], [33].
The adversarial game introduced by the generative adversarial
network (GAN) [34]–[36] makes it stand out of the deep
networks for FE. For example, [37] proposed a GAN-based
FE network for HSI where the original Jensen–Shannon
divergence is replaced by the Wasserstein distance. The
spectral–spatial generative adversarial network and conditional
random field (SS-GAN-CRF)-based framework [36] integrates
a semisupervised deep learning and a probabilistic graphical
model for the HSI classification task. As for the second
problem, rank is an appropriate measurement for data
information. For example, [38] uses ranks of feature maps
for filter pruning. Considering the high-dimensional situation,
rank has been extended to tensor.

Hence, we propose a novel BS method, i.e., rank-aware
GAN (R-GAN), to address the spectral saliency problem. First,
spectral vectors are inputted into GAN for deep latent FE,
which completes the global information and the inherent non-
linear relationship between bands lost in traditional BS meth-
ods. Then, the latent feature is refined with a rank-aware
strategy. Specifically, the tensor rank is used to determine
the scale of latent features with a criterion of being small
but informative. The saliency of bands is evaluated with rank.
Finally, the most salient bands are mapped to the original data
space to obtain the BS result. The main contributions of this
article are given as follows.

1) We propose a deep-learning-based BS method, which
combines the global modeling capability of deep FE
and the interpretability of BS. The interbands’ relevance
provided by deep FE helps to construct a complete
reference feature.

2) According to the data characteristics of different stages,
a rank-aware strategy containing tensor rank and matrix
rank is used for deep feature refinement to keep guiding
reference informative.

3) The structural similarity index measurement (SSIM)
bridges the latent space and the original data space, and
derives the final informative BS result.

The rest of this article is structured as follows. We first
introduce the proposed R-GAN framework in Section II. Next,
in Section III, we conduct the experiments to investigate
the performance of the proposed method and comparison
BS methods. Finally, we conclude with a summary and final
remarks in Section IV.

II. METHODOLOGY

Let an HSI cube with B spectral bands and N × M pixels
be defined as a three-way tensor H ∈ R

N×M×B . Let the
(i, j, b)th entry be denoted as Hi jb, and H(i, :, :), H(:, j, :),
and H(:, :, b) represent the i th horizontal, j th lateral, and bth
frontal slice, respectively. Spatially, H consists of N × M
spectral vectors H = {hi}N×M

i=1 . Along the band direction,
the HSI can be regarded as a collection of B frontal slices,
namely, band images H = {H(:, :, b)}B

b=1. For convenience,
it is abbreviated to H = {Hb}B

b=1. In BS, H can be split
into two categories, i.e., a remaining subset crammed with
salient bands I = {HI1 ,HI2 , . . . ,HIP } = {I p}P

p=1 and a
subset, with redundancy and less saliency, to be discarded
U = {HU1 ,HU2 , . . . ,HUQ } = {Uq}Q

q=1. Here, Ip and Uq are
the indices of the pth selected and qth unselected band image,
and I ∪ U = H, I ∩ U = ∅, and P + Q = B .

In essence, BS involves two core issues: how many bands
and which bands are preferred, i.e., to determine I p and P .
To solve these problems, BS is formulated as an optimization
problem aiming to maximize the saliency of the reserved
bands I

max
δb

B∑

b=1

δbR(Hb)

s.t.
B∑

b=1

δb = P (1)

where δb is a pointer indicating if Hb is included in I (δb = 1)
or in U (δb = 0). The saliency of each band is measured
by R(·). Solving the optimization problem in (1) is equivalent
to removing Q redundant and less salient bands. Most of
prior works calculate the related indicators and determine
the saliency of band images using clustering, leading to the
loss of global data properties and relevance between bands.
In this article, being virtue of the powerful ability of GAN
in learning hierarchical and nonlinear features, a reasonable
R(·) is constructed. First, the original HSI H is fed into
the network to generate the information-centralized latent
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Fig. 2. Schematic of the proposed R-GAN for BS in HSIs.

feature M = {Md}D
d=1. Then, M is further refined in a

rank-aware way consisting of two rank operations specific to
current data. Finally, BS is induced by the refined feature
N = {N t }T

t=1 through SSIM. SSIM captures the structural
information which plays a pivotal role in the human visual
system (HSV). The larger SSIM is, the more similar Hb and
informative N t are, and the more salient Hb is. Then, (1) can
be reformulated as

max
δb

B∑

b=1

T∑

t=1

δbSSIM(N t ,Hb)

s.t.
B∑

b=1

δb = P (2)

and the optimal band subset I can be obtained by

I = {Hb|δb = 1}. (3)

The schematic of the proposed R-GAN is shown in Fig. 2.

A. Information-Centralized FE

The sample adequacy of HSI makes it possible to model
distribution with data-driven deep learning tools (an HSI of
size 100 × 100 provides 10 000 training samples). Here, GAN
is chosen to extract referential latent features from B band
images. Typically, GAN consists of a bowtie-shaped genera-
tor G and a discriminator D in the latent space. However, such
a structure often comes with a nonnegligible reconstruction
performance penalty [39]. Thus, two discriminators Ds and
Dz are added to enforce the alignment in the spectral and
latent spaces, respectively. The GAN is trained by solving the
following optimization problem:

arg min
�G

max
�Ds ,�Dz

LAdv
(
�G,�Ds ,�Dz

) + LRecon(�G) (4)

where �G , �Ds , and �Dz denote the parameters of genera-
tor G, spectral discriminator Ds , and latent discriminator Dz ,

respectively. The first item is the adversarial loss and can be
factorized into two parts as follows:

LAdv
(
�G,�Ds ,�Dz

) = Ls

(
�G,�Ds

) + Lz

(
�G,�Dz

)
(5)

where Ls(�G,�Ds ) is the spectral adversarial loss matching
the distribution of the decoded spectral p(h̃i) and the known
input data distribution p(hi)

Ls
(
�G,�Ds

) = Ehi ∼p(hi )

[
log

(
Ds

(
hi ,�Ds

))]

+Eh̃i ∼p(h̃i )

[
log

(
1 − Ds

(
h̃i ,�Ds

))]
. (6)

Lz(�G,�Dz ) is formulated in the similar fashion as (6) aiming
to match distribution of the latent feature p(z) with the prior
distribution p(z̃)

Lz

(
�G,�Dz

) = Ez̃∼p(z̃)
[
log

(
Dz

(
z̃,�Dz

))]

+Ez∼p(z)
[
log

(
1 − Dz

(
z,�Dz

))]
. (7)

Here, p(z̃) is recommended to be N(0,I) [40].
In addition, LRecon(�G) is the reconstruction loss used to

align the real input with the reconstructed output. Therefore,
the reconstruction loss can be expressed by the MSE loss

LRecon(�G) = 1

N × M

N×M∑

i=1

∥∥hi − h̃i

∥∥2
2 (8)

where h̃i = G(hi ,�G).
By optimizing (4) with stochastic gradient descent (SGD),

we obtain the trained GAN �(�G,�Ds ,�Dz ), where �G =
[�En,�De] and �En and �De are the parameters of encoder
and decoder, respectively. The encoder is dedicated to map
the high-dimensional HSI into a low-dimensional latent space,
revealing the essential characteristics, i.e., the latent features

M = Encoder(H,�En). (9)

In Section III-E, FE, we design a BS method based
on the rank of slices dubbed as R-BS to show how the
information-centralized feature aids the proposed method in
the subsequent tasks.
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Fig. 3. Illustration of the t-SVD of tensor M. First, perform discrete Fourier
transformation (DFT) on every vector of M to obtain M̄. Then, compute
each front slice of Ū, S̄, and V̄ from M̄ by SVD. Finally, U, S, and V
are obtained via inverse DFT.

B. Rank-Aware Salient BS

For the latent features, it is crucial to keep the suffi-
ciency and conciseness of the contained information. Infor-
mation insufficiency hinders the superiority of the data-driven
approach. On the contrary, information redundancy conflicts
over the intention of BS. A linear algebraic measure, rank,
turns to be an appropriate measurement for spectral saliency.
Here, different data characteristics result in two rank calcula-
tion methods. First, the high-dimensional nature of M prefers
global tensor tubal rank instead of calculating the rank of the
2-D matrix after being reshaped. For tensor M ∈ R

N×M×D,
the tensor tubal rank is defined as the number of nonzero
singular tube of S, where S is from the tensor singular value
decomposition (t-SVD). t-SVD shown in Fig. 3 is solved with
the aid of time–frequency domain conversion and factorizes a
3-D tensor into three components, including two orthogonal
tensors, U and V , and a f-diagonal tensor, S

M = U ∗ S ∗ V∗. (10)

The tensor tubal rank rankt (M) can be defined as

rankt (M) = counts{i,S(i, i, :) �= 0}. (11)

Considering the property of inverse DFT

S(i, i, 1) = 1

n3

n3∑

j=1

S̄(i, i, j). (12)

Here, n3 is the number of slice in S. S(i, i, 1) = 0 derives
S̄(i, i, j) = 0 and then S(i, i, j) = 0, which indicates a
zero singular tube. Only S(i, i, 1) �= 0 contributes to the rank
calculation. That is, the tensor tubal rank depends on the first
slice S(i, i, 1) of S

rankt(M) = counts{i,S(i, i, 1) �= 0}. (13)

In accordance with rank, we can keep M informative and
restrict its dimension to reduce the computation load.

With M of an appropriate dimension, the local matrix rank
is applied for further evaluation on each slice to find the most
salient bands. Specifically, M is sorted by the rank of slice
Md , and N is a collection of slices with top-T rank

M = sort(M, key = rank(Md))

N = M[:, :, D − T : D]. (14)

Fig. 4. Illustration of salient slices selection. The intensity of the color
depends on the rank whose value is tagged in the corresponding position.

The rationale lies in that a larger rank suggests a larger
saliency. Fig. 4 gives an intuitive illustration. Here, to evaluate
the contribution of the rank-aware strategy, we also design
a rank-unaware strategy BS method (RU-GAN), that is, the
bands are selected by mapping latent features into the original
data space directly. See Section III-E, rank-aware strategy, for
detailed analysis.

C. Mapping Saliency to Original Data Space

To obtain the final BS result, the data-driven saliency is
mapped to the original data space with SSIM as (2). In other
words, Hb having the maximal SSIM with N t is regarded
as an alternative in the original data space. Hb is prioritized
by the noise level before matching [41]. Here, SSIM [42] is
adopted to evaluate the brightness, contrast, and structure to
characterize the data for favorable human vision perception,
which is defined as

SSIM = A ∗ C ∗ S

A = 2u1u2 + C1

u2
1 + u2

2 + C1

C = 2σ1σ2 + C2

σ 2
1 + σ 2

2 + C2

S = σ12 + C3

σ1σ2 + C3
(15)

where u1 and u2 are the means of N t and Hb, respectively,
σ1 and σ2 are the corresponding variances, σ12 is covariance,
and C1, C2, and C3 denote constants guaranteeing the validity
of fraction. The larger SSIM between N t and Hb is, the
more salient Hb is, and the more likely Hb plays a critical
role in subsequent tasks. Then, the selected subset can be
determined by (3). Other mapping methods, such as the mean
square error (MSE) and the Euclidean distance (ED), are
also studied. See Section III-E, mapping saliency method, for
detailed analysis.

III. EXPERIMENTS

A. Experimental Setup

Dataset: Five datasets (six HSIs) are used in our experi-
ments including four for detection and one for classification.
All the datasets are introduced as follows.

1) San Diego: The San Diego dataset covers two scenes
of the San Diego airport area, CA, USA, and is captured by
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensor. Both scenes consist of 100 × 100 pixels, and each
pixel is imaged in wavelengths ranging from 370 to 2510 nm
with 189 bands. We name the scene with three airplanes in
the upper left corner as SD-1 and the other one as SD-2.
The pseudo-RGB images and the ground truths are shown
in Fig. 5(a) and (b).
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Fig. 5. Pseudo-RGB images and ground truths of experimental datasets (a) SD-1, (b) SD-2, (c) TC, (d) GA, and (e) LA for the detection tasks.

2) Texas Coast: This dataset abbreviated as TC is taken by
AVIRIS sensor in 2010. In the experiment, 100 × 100 pixels
are used, which cover the Texas coast area with a resolution of
17.2 m and encompass a wavelength range of 450–1350 nm
with 204 bands. Eleven most disturbed bands are removed in
our experiments. Fig. 5(c) shows the pseudo-RGB image and
the ground truth.

3) Gainesville: This dataset is taken in Gainesville, FL,
USA, in 2010 by AVIRIS sensor and is named GA in
experiments. The spatial size is 100 × 100, and the resolution
is 3.5 m. The expansion of spectral direction covers wave-
lengths from 450 to 1350 nm. There are some ships considered
as outliers. The pseudo-RGB image and the ground truth are
shown in Fig. 5(d).

4) Los Angeles: This dataset composed of 100 × 100 pixels
describes the Los Angeles city area in 2011 with a resolution
of 7.1 m. This dataset shares the same imaging technique as
above and extends each pixel to 205 bands with a range of
430–860 nm. Conveniently, it is shortened to LA. Fig. 5(e)
shows the pseudo-RGB image and the ground truth.

5) Pavia University: The Pavia University dataset (abbre-
viated as PaviaU) is acquired by the reflective optics system
imaging spectrometer (ROSIS) sensor. It covers Pavia Univer-
sity in the Northern Italy with 610 × 340 pixels. Each pixel
has 103 spectrum bands ranging from 430 to 860 nm. Fig. 6
shows the pseudo-RGB image and the ground truth.

In this article, we resort AED [43] to generate the
ground truth for each dataset, which is still a rough guide.
Since the targets are fully resolved spatially, the read-
ers can obtain a more convincing ground truth through
high-resolution panchromatic data (pansharpening) or super-
resolution methodology.

Compared Methods: The effectiveness of R-GAN is eval-
uated by comparison with eight existing BS methods,
e.g., dominant-set-extraction-based selector (DSEBS) [44],
EFPDC [28], OCF [27], saliency bands and scale selection

Fig. 6. Pseudo-RGB image and ground truth of experimental dataset PaviaU
for the classification task.

(SBSS) [7], adaptive subspace partition strategy (ASPS) [41],
scalable one-pass self-representation learning (SOPSRL) [15],
fast neighborhood grouping method (FNGBS) [45], and BS
network (BS-Net) [33]. The proposed and the competitor
algorithms use different features for selection. R-GAN selects
bands according to the spatial rank with the guidance of spec-
tral information centralized feature. DSEBS exploits structure
information by means of local spatial–spectral consistency
analysis, which calculates the gradients in three directions.
EFPDC draws support from the spectral feature by calculating
the similarity matrix between bands. OCF chooses the bands
by using EFPDC to assess whether the band is a suitable
cluster center and only considering the spectral feature. SBSS
combines spectral and spatial information and treats the spatial
coordinates and spectral coordinates as the same. Both ASPS
and FNGBS are spectral–spatial methods, the difference is
the spatial feature used to select representative band. ASPS
considers the band noise level, while FNGBS uses band
information evaluated with entropy. SOPSRL only utilizes the
spectral feature, and the lost spatial information leads to a
suboptimal selection. The fully connected BS-Net used for
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TABLE I

PARAMETERS OF COMPARED METHODS

comparison is trained with spectral vectors, which means that
it is also a spectral method. Note that EFPDC, OCF, SBSS,
and ASPS are parameter-free, and the parameters impacting on
R-GAN, DSEBS, SOPSRL, FNGBS, and BS-Net are listed in
Table I. The proposed R-GAN is trained for 500 epochs for all
the experimental datasets, and it only takes nearly 13 min for
the largest dataset PaviaU (610 × 340 × 103). Considering the
very different characteristics of each HSI dataset, the training
procedure is dataset-customized.

Evaluation Metric: Two typical detectors, including a
statistical modeling-based technique, Reed–Xiaoli (RX) algo-
rithm [46], and a well-known subpixel target detector, con-
strained energy minimization (CEM) algorithm [47], are
used to offer the objective detection evaluation for all the
BS methods. Note that the dimension reduction necessitates
the recalculation of prior target information “d” functioning
in CEM. We generate “d” for the results of R-GAN and
the above competitors by averaging all the target spectral
vectors. The area under the curve (AUC) of the receiver
operating characteristic (ROC) curve is calculated to provide
the quantitative analysis. ROC curve describes the varying
relationship between the probability of detection (PD) and
probability of false alarm (PFA) based on the ground truth.
In practice, the PD at low PFA is the most important to the
applications, particularly for the military/defense operations.
Hence, the AUC and ROC curves integrated with the low PFA
range are particularly studied. Here, the ROC curves and AUC
values with a low PFA range (1e−4 and 1e−2) are considered.

Besides, k-nearest neighborhood (KNN) is employed to
assess the effectiveness of the classification task. 10% samples
from each class based on selected bands are randomly chosen
as the training set, and the remaining 90% samples are used for
the test. The classification results are evaluated by the overall
accuracy, which is defined as the number of correctly classified
pixels out of the total number of all test pixels in percentage.

Because the desired number of bands is applicant-
dependent, we implement experiments in the range of five to
30 bands to offer a comprehensive assessment. Considering
the bell-shaped accuracy tendency caused by the “Hughes”
curse of dimensionality phenomenon, the peaked accuracy is
studied for each method.

B. Performance Comparison on Detection Tasks

Table II reports the anomaly detection performance. For
the SD-1 dataset, R-GAN shows overwhelming dominance in

all the studied band sizes except for 5. The subsets selected
by R-GAN outperform the baseline for at least 12.6% and
2.4% on SD-1 and SD-2, respectively. R-GAN only has a gap
of 0.1% on SD-1 and SD-2 with the best-compared methods
(BS-Net and EFPDC) with respect to the peaked accuracy.
On the TC dataset, the good performance of all the compared
methods shows that minimizing accuracy loss is a reasonable
criterion to decide the best BS method. When the band size
is 5, R-GAN achieves the second-highest performance after
SBSS. As the number of bands is increasing, R-GAN shows its
superiority over other methods. As for peaked AUC, R-GAN
exceeds the runner-up (BS-Net) by 0.1%. For the GA dataset,
R-GAN performs well on all the studied band numbers, which
leads to a higher global and peaked accuracy. The peaked per-
formance of R-GAN outperforms FNGBS by 0.73%. On the
LA dataset, R-GAN maintains the highest accuracy for all
the studied dataset scales. The peaked accuracy of R-GAN
exceeds the best comparison methods (DSEBS and SBSS)
by 0.2%.

As for target detection performance reported in Table III,
R-GAN can still outperform. For the SD-1 dataset, R-GAN
achieves the highest accuracy values at all subset scales. Even
the worst performance of R-GAN on SD-1 is over 0.988,
which is nonexistent in other compared methods. On the
TC dataset, R-GAN leads at different band scales except
for 5. However, the integral superiorities make it more
competitive.

In some military/defense application scenarios, the desired
detector should be able to keep high PD when PFA is low,
which is displayed as the ROC curve close to the upper left
corner. As reported in Table II, the AUC values with a low PFA
range (1e − 4 and 1e − 2) outperform other methods and the
baseline for all the experimental datasets. The corresponding
ROC curves are illustrated in Figs. 7 and 8. The proposed
R-GAN envelopes other methods on SD and GA datasets
and is a little lower than ASPS or DSEBS on TC and LA
datasets, which indicates its competitiveness and effectiveness.
The results of the target detection task are shown in Table III
and Fig. 9. The numerical superiority on the SD-1 dataset is
embodied in the ideal ROC curves in Fig. 9(a), which is above
the comparison methods in the whole studied PFA range. For
the TC dataset, the AUC value of R-GAN is lower than the
baseline, which is consistent with the ROC curves in Fig. 9(b).
Except for the baseline, the ROC curve of R-GAN is only
lower than FNGBS. In general, the proposed R-GAN performs
well in the low PFA range on all the experimental datasets,
which indicates it is a suitable BS method for the detection
tasks in military/defense operations.

C. Performance Comparison on Classification Task

We conduct the proposed R-GAN on the classification task
to further evaluate the generalization for various downstream
tasks. As listed in Table IV, R-GAN can distinguish the nine
class objects with less error than the comparison methods
when the band number is set more than 15. With more bands,
the performance of R-GAN even surpasses the baseline. The
peaked OA of R-GAN outperforms OCF and BS-Net by 2.4%
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TABLE II

AREA UNDER THE CURVE (AUC) VALUES OF DIFFERENT METHODS ON EXPERIMENTAL DATASETS FOR ANOMALY DETECTION

Fig. 7. ROC curves (in low PFA range) of different methods on (a) SD-1, (b) SD-2, and (c) TC datasets for anomaly detection.

and 6.6%. In Fig. 10, our work is extended into more bands
toward all bands, and the overall superiority and stability are
clear.

D. Network Architecture Analysis
GAN exhibits three game schemes according to the diver-

sity of discriminator in quantity and position, as illustrated
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TABLE III

AUC VALUES OF DIFFERENT METHODS ON EXPERIMENTAL DATASETS FOR TARGET DETECTION

TABLE IV

OA VALUES OF DIFFERENT METHODS ON THE PAVIAU DATASET FOR CLASSIFICATION WITH KNN

Fig. 8. ROC curves (in low PFA range) of different methods on (a) GA and
(b) LA datasets for anomaly detection.

in Fig. 11. The discriminator in Fig. 11(a) establishes adver-
sarial learning between the input and reconstructed spectral
vectors, forcing the imitation to be similar. Fig. 11(b) imposes
a prior distribution in the latent space and regresses the recon-
structed spectral vector to the input only with the reconstruc-
tion loss. R-GAN is based on the network architecture shown
in Fig. 11(c) realizing the alignments in both spectral and
latent spaces. We report the anomaly detection performance
with two band scales (10 and 20) in Table V, and the three

Fig. 9. ROC curves (in low PFA range) of different methods on (a) SD-1
and (b) TC datasets for target detection.

schemes in Fig. 11 are represented by s, z, and s + z,
respectively. The spectral-latent adversarial scheme achieves a
dominant position in all the experimental datasets. For exam-
ple, on the SD-1 dataset, latent, spectral, and spectral-latent
present an increased whole range AUC value on the studied
data scales. When detect with 20 bands, the added spectral
discriminator blooms the latent pattern by 0.5% (28.6% in low
PFA range AUC value). Overall, the spectral-latent scheme
benefiting from the two alignments in both spectral and latent
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Fig. 10. Comparison of OA values using KNN under different numbers of
bands selected for the PaviaU dataset.

Fig. 11. Illustration of three adversarial patterns. (a) Adversarial in spectral
space. (b) Adversarial in latent space. (c) Adversarial in spectral and latent
spaces.

TABLE V

AUC VALUES OF DIFFERENT NETWORK ARCHITECTURES ON

EXPERIMENTAL DATASETS FOR ANOMALY DETECTION

spaces achieves the highest average AUC values no matter
whole or low PFA range and relatively low standard deviation,
which indicates better FE ability and stability.

E. Component Analysis

As stated in Section II, our method is implemented with
three important steps. Here, we discuss their contribution to
the final performance.

Fig. 12. FE of component analysis: (a) anomaly and target detection maps of
R-BS on the SD-1 dataset, (b) anomaly and target detection maps of R-GAN
on the SD-1 dataset, (c) anomaly and target detection maps of R-BS on the
SD-2 dataset, and (d) anomaly and target detection maps of R-GAN on the
SD-2 dataset.

Fig. 13. Rank-aware strategy of component analysis: (a) anomaly detection
performance of RU-GAN and R-GAN on experimental datasets with data scale
of 20 evaluated with AUC in the whole PFA range and (b) anomaly detection
performance of RU-GAN and R-GAN on experimental datasets with data
scale of 20 evaluated with AUC in the low PFA range.

1) Feature Extraction: The first step provides the
information-centralized referential latent feature for follow-up
actions. A BS method based on the rank of slices dubbed as
R-BS is compared with R-GAN to evaluate the necessity of
referential information. Taking the SD dataset and data scale
of 20 for example, the detection maps are exhibited in Fig. 12.
It is obvious that R-GAN leads to a more prominent target
and anomaly, and less noisy background. The performance
gap is caused by the information-centralized guiding feature
and indicates that the bands selected with the guiding feature
contain more useful information for the detection task.

2) Rank-Aware Strategy: In R-GAN, a rank-aware strategy
is conducted to keep the referential latent feature informative
while reducing dimension. Here, we design a rank-unaware
strategy BS method (RU-GAN), that is, the bands are selected
by mapping latent features into the original data space with
SSIM directly. The bar chart in Fig. 13 shows the perfor-
mance of RU-GAN and R-GAN on experimental datasets for
anomaly detection tasks evaluated with two criteria. No matter
which kind of AUC is used for assessment, R-GAN is higher
than RU-GAN on all the datasets, which indicates that the
rank-aware strategy containing two rank operations can select
salient features without key information loss.

3) Mapping Saliency Method: SSIM considering bright-
ness, contrast, and structure is used for mapping salient
features into the original data space. Another two popular
distance metrics, i.e., MSE and ED, are discussed. Note that,
the larger SSIM and smaller MSE and ED, the more likely
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TABLE VI

AUC VALUES OF DIFFERENT MAPPING SALIENCY METHODS ON EXPERIMENTAL DATASETS FOR ANOMALY DETECTION

TABLE VII

TIME COMPLEXITY FOR THE COMPARED METHODS

the corresponding band is to be selected. Table VI reports the
AUC values integrated with the whole and low PFA ranges of
different mapping saliency methods on experimental datasets
for anomaly detection. SSIM shows its superiority in mapping
saliency for all the datasets except the low PFA range AUC
on the SD-2 dataset. Exampled with the GA dataset, SSIM
outperforms MSE and ED by 0.5% and 0.2% in the whole
PFA range and 29.03% and 20% in the low PFA range.

F. Computational Complexity Analysis

The conduction of the proposed algorithm can be decom-
posed into three steps. In the following, we will discuss the
theoretical computational complexity for each step.

1) Extraction Step: As stated in Section II-A, a GAN
containing a generator (an encoder and a decoder) and two
discriminators (latent discriminator Dz and spectral discrimi-
nator Ds ) is constructed for information-centralized FE. Only
the forward propagation in (9) is considered for computational
complexity computation, and it takes O(B × Num × h). Here,
Num = N × M denotes the number of pixels in an his, and
h is the max hidden nodes’ number in the encoder.

2) Selection Step: In this step, the complexity comes from
rank computation including both tensor and matrix version.
The tensor rank implemented by t-SVD in Fig. 3 gener-
ates O(D × Num3/2) complexity, which is the maximum
between DFT/IDFT (implemented by FFT/IFFT) [O(D ×
log D × Num)] and slicewise SVD [O(D × Num3/2)]. The
matrix rank takes O(D × Num3/2). Here, D is the size
of information-centralized latent feature outputted from the
encoder.

3) Mapping Step: In this step, the similarity between refined
feature N = {N t}T

t=1 and HSI H = {Hb}B
b=1 is evaluated by

SSIM and takes O(B × T × Num) complexity.
In a sum, R-GAN takes O(B × Num × h + D ×

Num3/2 + B × T × Num). EFPDC, OCF, SBSS, ASPS, and
SOPSRL have reported complexity in respective articles, and
the complexity of FNGBS can be derived according to ASPS.
Although the core code of DSEBS is not open source, we can
estimate the computation is more than O(B × Num + B2 ×
Num + B3) from the algorithm. As listed in Table VII, our
better-performing R-GAN shares the same order of complexity
with the most of methods except for SBSS (linear complexity).

IV. CONCLUSION

In this article, we propose a novel BS method named
R-GAN to address the spectral saliency in HSIs. The main
idea behind R-GAN is to select the most salient subset
containing as much as possible information and minimize
the performance degradation in the follow-up tasks. R-GAN
consists of three components, i.e., information-centralized FE,
rank-aware salient BS, and mapping saliency to the original
data space. The contributions of components are evaluated, and
the effectiveness and superiority of R-GAN are demonstrated
by comparing with other BS methods on detection and classi-
fication tasks. For example, the subset (ten bands) selected by
R-GAN from the SD-1 dataset boosts the baseline detection
performance by 13.7%. The classification performance on
the PaviaU dataset with 30 bands is 0.46% better than the
baseline. Note that our experiments are based on the ground
truths generated by AED, which is still a rough guide. The
readers can obtain a more convincing ground truth through
high-resolution panchromatic data (pansharpening) or super-
resolution methodology.
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